g-Convex Weight Sequences

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Expansion of Bessel and g-Bessel sequences to dual frames and dual g-frames

In this paper we study the duality of Bessel and g-Bessel sequences in Hilbert spaces. We show that a Bessel sequence is an inner summand of a frame and the sum of any Bessel sequence with Bessel bound less than one with a Parseval frame is a frame. Next we develop this results to the g-frame situation.

متن کامل

Duality of $g$-Bessel sequences and some results about RIP $g$-‎frames

‎In this paper‎, ‎first we develop the duality concept for $g$-Bessel sequences‎ ‎and Bessel fusion sequences in Hilbert spaces‎. ‎We obtain some results about dual‎, ‎pseudo-dual ‎and approximate dual of frames and fusion frames‎. ‎We also expand every $g$-Bessel ‎sequence to a frame by summing some elements‎. ‎We define the restricted isometry property for ‎$g$-frames and generalize some resu...

متن کامل

New Inequalities For Convex Sequences

In this paper, we will show some new inequalities for convex sequences, and we will also make a connection between them and Chebyshev’s inequality, which implies the existence of new class of sequences satisfying Chebyshev’s inequality. 2010 Mathematics Subject Classification: 26D15, 26D07.

متن کامل

Jensen’s Inequality for g-Convex Function under g-Expectation

A real valued function defined on R is called g–convex if it satisfies the following “generalized Jensen’s inequality” under a given g-expectation, i.e., h(E[X ]) ≤ E[h(X)], for all random variables X such that both sides of the inequality are meaningful. In this paper we will give a necessary and sufficient conditions for a C-function being g-convex. We also studied some more general situation...

متن کامل

Minimal (max,+) Realization of Convex Sequences∗

We show that the minimal dimension of a linear realization over the (max,+) semiring of a convex sequence is equal to the minimal size of a decomposition of the sequence as a supremum of discrete affine maps. The minimal-dimensional realization of any convex realizable sequence can thus be found in linear time. The result is based on a bound in terms of minors of the Hankel matrix.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Mathematics

سال: 2018

ISSN: 2227-7390

DOI: 10.3390/math6040054